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This paper presents recent advances in the use of diffeomorphic active shapes which incorporate the conservation laws of large
deformation diffeomorphic metric mapping. The equations of evolution satisfying the conservation law are geodesics under
the diffeomorphism metric and therefore termed geodesically controlled diffeomorphic active shapes (GDAS). Our principal
application in this paper is on robust diffeomorphic mapping methods based on parameterized surface representations of
subcortical template structures. Our parametrization of the GDAS evolution is via the initial momentum representation in the
tangent space of the template surface. The dimension of this representation is constrained using principal component analysis
generated from training samples. In this work, we seek to use template surfaces to generate segmentations of the hippocampus with
three data attachment terms: surface matching, landmark matching, and inside-outside modeling from grayscale T1 MR imaging
data.This is formulated as an energyminimization problem,where energy describes shape variability and data attachment accuracy,
and we derive a variational solution. A gradient descent strategy is employed in the numerical optimization. For the landmark
matching case, we demonstrate the robustness of this algorithm as applied to the workflow of a large neuroanatomical study by
comparing to an existing diffeomorphic landmark matching algorithm.

1. Introduction

There have been many approaches to segmentation in
medical imaging, including both the active shape methods
pioneered by Kass et al. [1] and template based approaches
pioneered by Dann et al. [2]. For studying images made
up of simple homogeneous structures such as anatomical
structures, local active evolution methods [1, 3–5] which are
encoded through their boundary representations are natural.
In such methods, the complexity of the representation is
reduced from an encoding based on the dimension of the
extrinsic background space containing the object, to the
dimension of the boundary.

Given the line of work in template based computational
anatomy which has emphasized the important role of dif-
feomorphisms for defining bijective correspondence between
coordinate systems, it is natural to constrain the iterative

methods of active shapes so that shape evolution preserves
the original topology of the template. This is the intention of
the diffeomorphic active contour (DAC) approaches taken by
Younes et al. [6–8], including in the local evolution equations
the diffeomorphism constraint. DACmethods, in a form sim-
ilar to the original methods of Christensen et al. and Trouvé
[9, 10], only optimize for the final position of the deformable
template and not for the evolution process that leads to it.
The approach adopted herein results in an entire trajectory
through shape space, allowing basic prior knowledge, that is,
proximity to a template, to be incorporated in the estimate of
a shape.

The trajectories considered are geodesic flows, which are
deduced from the Riemannian structure associated to large
deformation diffeomorphic metric mapping (LDDMM) [10–
12]. Geodesics are characterized by a conservation law [7, 13–
16] on the “momentum” associated to the evolution, where
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we describe in Section 2 what is meant by momentum in
this context. This allows a further reduction in complexity
from a time varying flow to a single initial condition: an
initial momentum vector. In other words, a target shape
is represented as the endpoint of a geodesic flow from a
template and can be encoded by one such vector. In this
setting, knowledge of shape variability is straightforwardly
incorporated via prior distributions on initial momentum.
We call these connections geodesically controlled diffeomor-
phic active shapes (GDAS).

In this paper, we examine robust LDDMM via geodesi-
cally controlled diffeomorphic active shape models. The
GDAS method allows us to introduce prior distributions
so as to support the diffeomorphic large deformations of
unconstrained LDDMM (taking advantage of the reduction
in complexity from a time varying flow to an initial condi-
tion), while at the same time constraining the mapping, so it
is indexed to neuroanatomical shapes such as the subcortical
structures (taking advantage of the reduction in complexity
frombackground space to structure boundaries).We demon-
strate that these mappings are robust to small variations
associated with the MRI measures of the structures. This is
accomplished by constraining the initial momentum of the
GDAS solutions to be in the span of a finite-dimensional basis
constructed from PCA associated with large-scale surface-
based [17] anatomical studies and by penalizing our initial
momentum estimates in basis directions of low variability as
recently also derived in Qiu et al.’s work [18].

As with the classical active shape methods (described
for example in [19–25], we pose the GDAS problem in the
variational setting with the data term used for matching
derived from various representations of a partition of the
“scenes” including (i) collection of structures defined via
triangulated meshes, (ii) a collection of structures defined
through feature points, and (iii) a collection of homogeneous
structures defined via inside-outside appearance model [26–
30]. In case (iii), the process is iteratively driven by a voxel’s
likelihood of being interior or exterior of the region of interest
(ROI), with the shape controlled by the conservation law
geodesic dynamics. In our model, the appearance likelihood
at each voxel only depends on whether the voxel is inside
or outside the surface. It is estimated from the MRI training
samples and modelled as Gaussian mixtures [31, 32] learned
with the expectation maximization algorithm.

Vailliant et al. [33] first proposed this framework in
a discussion of statistics on diffeomorphisms, and more
recently Qiu et al. [18] addressed this problem and derived an
algorithm for the case of surface-to-surface matching. Here,
we consider a general data attachment term and provide a
variational solution. We develop and implement a gradient
descent algorithm for the case of surface matching, landmark
matching, and grayscale image segmentation. A lack of
robustness is an important challenge to high dimensional
registration and a barrier to its automation and use in high
throughput studies.We show that GDAS provides an efficient
method for constraining LDDMM to incorporate the finite-
dimensionality of typical shape variation and emphasize the
robust performance of ourmethods on challenging biological
datasets

2. Geodesic Diffeomorphic Evolution for
Active Surfaces

In our region-of-interest (ROI) approaches to subcortical
structure analysis in the human brain, our goal is to robustly
segment anatomical structures (in particular neuroanatom-
ical structures such as the hippocampus, caudate nucleus,
etc.) from the surrounding environment using a given set
of data (such as manually placed landmarks within an ROI,
coarse segmentations, or MR images). Typically, anatomical
structures have their own characteristic shapes and appear-
ance whichmust be learned from training data to successfully
perform segmentation.

2.1. Conservation Law Controlled Diffeomorphic Evolution.
The methodology of tangent space representation has been
a powerful tool in computational anatomy, since it was pro-
posed in [16]. In this context, evolution of visual structures,
like points, curves, surfaces, and images is governed by
geodesic equations. By the law of momentum conservation,
the initial state of the equations determines the entire tra-
jectory of evolution and can be used as a representation of
the trajectory endpoint. We refer to [16, 34] for more details
and context in shape spaces modeled as homogeneous spaces
under diffeomorphic action and describe here a special form
of the associated equations that will be adapted to our needs.

For a triangulated surface 𝑆
0

in R3 with vertices
𝑥
1
, . . . , 𝑥

𝐿
, the initial momentum 𝜌(0) : 𝑆

0
→ R3 can be

represented by a vector 𝑎
𝑙
at each vertex through 𝜌(0) =

∑
𝐿

𝑙=1
𝑎
𝑙
𝛿(𝑥
𝑙
). One can derive the geodesic equation for the

evolution of 𝑆
0
, which is equivalent to the geodesic equation

for point sets [16]. We define a radially symmetric smoothing
kernel 𝐾 on R3 ×R3. A typical choice, used here, is

𝐾(𝑥, 𝑦) = exp(−
𝑥 − 𝑦



2

2𝜏2
) . (1)

With 𝐾(𝑥, 𝑦) = 𝛾(‖𝑥 − 𝑦‖
2
), we denote 𝛾

𝑘𝑙
= 𝛾(‖𝑥

𝑘
− 𝑥
𝑙
‖
2
),

and 𝛾


𝑘𝑙
= 𝛾

(‖𝑥
𝑘
− 𝑥
𝑙
‖
2
). The geodesic evolution satisfies

d𝑥
𝑘

d𝑡
=

𝐿

∑

𝑙=1

𝛾
𝑘𝑙
𝑎
𝑙
,

d𝑎
𝑘

d𝑡
= −2

𝐿

∑

𝑙=1

𝛾


𝑘𝑙
(𝑎
𝑙
⋅ 𝑎
𝑘
) (𝑥
𝑘
− 𝑥
𝑙
) ,

(2)

where the notation 𝑎 ⋅ 𝑏 refers to the usual dot product
between vectors in R3. Once the initial position of the
vertices, 𝑥(0) = (𝑥

1
(0), . . . , 𝑥

𝐿
(0)), and the initial momentum

vector, 𝛼(0) = (𝑎
1
(0), . . . , 𝑎

𝐿
(0)), are provided, the evolution

of the point set is uniquely determined. The endpoints of the
evolution 𝑥(1) = (𝑥

1
(1), 𝑥
2
(1), . . . , 𝑥

𝐿
(1)) correspond to the

deformed surface 𝑆(1). It can be shown that (2) has solutions
over arbitrary time intervals [34]. Equation (2) induces
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a diffeomorphism, 𝜙, that interpolates the evolution of the
vertices via the equation

d𝜙
d𝑡

(𝑡, 𝑥) =

𝐿

∑

𝑙=1

𝐾(𝜙 (𝑡, 𝑥) , 𝑥
𝑙
) 𝑎
𝑙
. (3)

The conservation law associated to (2) then takes the form
𝑎
𝑙
(𝑡) = 𝐷𝜙(𝑡, 𝑥

𝑙
)
−𝑇
𝑎
𝑙
(0).

Hence, we are able to represent a shape by an initial
momentum vector (as opposed to a function or distribution)
and a template. Furthermore, the variability of shapes can be
described from probabilistic properties of initial momentum.
This is the basic representation for the tangent space PCA of
shapes.

2.2. Finite Dimensional Representation via PCA in the Tangent
Space. Clearly, as the discretization of the surface gets fine,
the dimension of the control point representation of the
momentumgoes to infinity.Wewant to characterize themain
modes of statistical variations in our data, of which there is a
small number up to some acceptable error. This enables us
to write the momentum vector in a finite dimensional span
regardless of the discretization.

It is natural to do this empirically based on training
samples. PCA depends on the definition of an inner product
in the considered space. In our context, the inner product
derives from the Riemannian metric that led to the geodesic
equation. Details of corresponding PCA have been described
previously [33].

We calculate a population template 𝑇 using the approach
in [35], but several other algorithms are available [36–38].
We denote the inner product between two initial momentum
vectors 𝛼 and �̃�, as ⟨𝛼, �̃�⟩

𝑇
. Assume we have recovered

mean initial momentum vector 𝛼, 𝐷 orthonormal prinicipal
components 𝑢

𝑖
(with ⟨𝑢

𝑖
, 𝑢
𝑗
⟩
𝑇

= 𝛿
𝑖𝑗
), and an estimate of

variance along each component 𝜆
𝑖
. We note that any initial

momentum vector 𝛼 can be projected onto the principal
space as

proj (𝛼) = 𝛼 +

𝐷

∑

𝑖=1

𝑘
𝑖
𝑢
𝑖
, where 𝑘

𝑖
= ⟨𝛼 − 𝛼, 𝑢

𝑖
⟩
𝑇
. (4)

By parameterizing our deformations with respect to the 𝑘
𝑖
,

the variability of the surface shape is constrained by the
principal space generated from the training set.

3. Segmentation Algorithms

3.1. Variational Formulation of Volumetric Segmentation. We
formulate segmentation problemswithin an energyminimiz-
ing scheme. The energy includes two terms: one term is to
constrain the shape in the principal space, with appropriate
weights derived from PCA, and the other term regulates the
error of mismatch, which we will define in a general sense
here and show specific examples in Sections 3.2 to 3.4.

We introduce some notation. Let Ω ⊂ R3 be the
background space. Let 𝑇 denote the template, which will
be assumed to be a closed surface. After learning, the

selected principal space of initial momentum is spanned
by 𝐷 orthonormal vectors 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝐷
corresponding to

decreasing eigenvalues 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝐷
.

Our goal is to segment the region-of-interest (ROI) from
Ω using a deformable model; that is, we want to deform the
template 𝑇, so that it overlaps with the boundary of the ROI.
We assume that 𝑇 is a triangulated surface, with vertex set
𝑥
0

= (𝑥
0

1
, . . . , 𝑥

0

𝐿
). For an initial momentum 𝛼, we let 𝑥𝛼

denote the solution at time 𝑡 = 1 of (2) initialized with
𝑥
𝑘
(0) = 𝑥

0

𝑘
and 𝑎
𝑘
(0) = 𝛼. We let 𝑆𝛼 denote the triangulated

surface that inherits the topology of 𝑇with displaced vertices
𝑥
𝛼.
We now describe the two terms in our energy that

balance the prior knowledge we have of the diffeomorphic
deformation with the accuracy of the segmentation. The
initial momentum 𝛼 is constrained to the principal space and
takes the form 𝛼 (0) = 𝛼+∑

𝐷

𝑛=1
𝑘
𝑛
𝑢
𝑛
. This prior knowledge is

regulated by the coefficients of principal components, scaled
by eigenvalues, resulting in the first term of our cost function:

𝐸
1
=

𝐷

∑

𝑛=1

𝑘
2

𝑛

𝜆
𝑛

. (5)

We define the accuracy of segmentation based on some
function 𝐸

2
of only available data (e.g., an image, a set

of landmarks, or a surface) and the configuration of our
deformed template 𝑆

𝛼. For the time being, we assume that
the derivative of this function with respect to each of the
𝑥
𝛼

𝑖
is known, and we denote the vector of this derivative by

𝜕𝐸
2
/𝜕𝑥
𝛼.

Our goal is to find the optimal coefficients 𝑘
1
, 𝑘
2
, . . . , 𝑘

𝐷

that minimize the energy:

𝐸 = 𝐸
1
+

1

𝜎2
𝐸
2
. (6)

The variational problem is solved by calculating the derivative
of 𝐸 with respect to each coefficient 𝑘

𝑛
. The derivative of 𝐸

1

is trivial:
𝜕𝐸
1

𝜕𝑘
𝑛

=
2𝑘
𝑛

𝜆
𝑛

. (7)

The derivative of 𝐸
2
can be calculated by the chain rule

𝜕𝐸
2

𝜕𝑘
𝑛

= (
𝜕𝐸
2

𝜕𝑥𝛼
)

𝑇

(
𝜕𝑥
𝛼

𝜕𝛼
) 𝑢
𝑛

= (
𝜕𝐸
2

𝜕𝛼
)

𝑇

𝑢
𝑛
.

(8)

While the term 𝜕𝑥
𝛼
/𝜕𝛼 is unknown, its product with 𝜕𝐸

2
/𝜕𝑥
𝛼

(which we denote as 𝜕𝐸
2
/𝜕𝛼) can be calculated numerically

by solving a system of linear ordinary differential equations.
This adjoint method has become common in this context
and is derived, for example, in [35]. It is described for
completeness in Appendix B. The derivative of 𝐸 is given by

𝜕𝐸

𝜕𝑘
𝑛

=
2𝑘
𝑛

𝜆
𝑛

+
1

𝜎2
(
𝜕𝐸
2

𝜕𝛼
)

𝑇

𝑢
𝑛
. (9)

We now discuss three applications and explain examples
of 𝐸
2
and their gradients.
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3.2. Robust Surface Matching. In challenging surface map-
ping applications, it can be necessary to regularize the
mappings to avoid undesirable results, and GDAS provides
a powerful method for doing so.

In particular, volumetric segmentations of neuroanatomy
are often readily available. Converting them to an isosurface
for analysis and display is standard, and GDAS provides a
method to convert such an isosurface to one reflecting the
typicality and variability of a population, rather than features
of the volumetric data with an unnatural voxelized structure.
Our goal here is to provide a tool to correct for such erroneous
segmentations.

This application is essentially equivalent to that presented
in [18]. We retain it here as it is the most natural application
of GDAS (priors learned from surface matching are used to
regularize surfacematching), to develop a notation consistent
with that for our other applications and to demonstrate robust
performance on poorly behaved datasets.

3.2.1. Notation. The deformed template surface 𝑆
𝛼 is tri-

angulated with vertices 𝑥
𝛼

1
, . . . , 𝑥

𝛼

𝐿
. Suppose the template

surface has 𝑀 faces denoted as 𝐹 = (𝑓
1
, . . . , 𝑓

𝑀
). Each

face is represented by an ordered triple of vertices: 𝑓 =

(𝑥
𝛼

𝑓,1
, 𝑥
𝛼

𝑓,2
, 𝑥
𝛼

𝑓,3
). We define oriented edges on face 𝑓 by

𝑒
𝛼

𝑓,1
= 𝑥
𝛼

𝑓,2
− 𝑥
𝛼

𝑓,3
,

𝑒
𝛼

𝑓,2
= 𝑥
𝛼

𝑓,3
− 𝑥
𝛼

𝑓,1
,

𝑒
𝛼

𝑓,3
= 𝑥
𝛼

𝑓,1
− 𝑥
𝛼

𝑓,2
,

(10)

the area-weighted normal to face 𝑓 by

𝑁
𝛼

𝑓
=
1

2
𝑒
𝛼

𝑓,3
× 𝑒
𝛼

𝑓,2
, (11)

and the face center by

𝑐
𝛼

𝑓
=
1

3
(𝑥
𝛼

𝑓,1
+ 𝑥
𝛼

𝑓,2
+ 𝑥
𝛼

𝑓,3
) . (12)

Similarly, suppose the target surface has 𝐿
 vertices

𝑦
1
, . . . , 𝑦

𝐿
and 𝑀

 faces denoted as 𝐹 = (𝑓


1
, . . . , 𝑓



𝑀
), with

oriented edges 𝑒
𝑓

,1
, 𝑒
𝑓

,2
, 𝑒
𝑓

,3
, area-weighted normals given

by𝑁
𝑓
 , and face center 𝑐

𝑓
 .

Similarly to the case for velocity fields, we define a
smoothing kernel 𝐾

𝑆
(𝑆 for “surface”) of the form in (1) to

be used for comparing two surfaces.

3.2.2. Energy. Following [17], we embed surface matching
in a more general “current matching” problem. This results

in an energy to be minimized taking into account closeness
between two surfaces, as well as orientation of normals:

𝐸
2
=

𝑀

∑

𝑖=1

𝑀

∑

𝑗=1

𝑁
𝛼𝑇

𝑖
𝐾
𝑆
(𝑐
𝛼

𝑖
, 𝑐
𝛼

𝑗
)𝑁
𝛼

𝑗

− 2

𝑀

∑

𝑖=1

𝑀


∑

𝑗=1

𝑁
𝛼𝑇

𝑖
𝐾
𝑆
(𝑐
𝛼

𝑖
, 𝑐


𝑗
)𝑁


𝑗

+

𝑀


∑

𝑖=1

𝑀


∑

𝑗=1

𝑁
𝑇

𝑖
𝐾
𝑆
(𝑐


𝑖
, 𝑐


𝑗
)𝑁


𝑗
.

(13)

The constant 𝜎2 in (6) is determined heuristically.

3.2.3. Energy Gradient. We refer the reader to [17] for the
derivation of this energy gradient and present the result only
here:

𝜕𝐸
2

𝜕𝑥𝛼

𝑘

= ∑

𝑓:𝑥
𝛼

𝑘
=𝑥
𝛼

𝑓,𝑖

[

[

𝑀

∑

𝑗=1

𝑒
𝛼

𝑓,𝑖
× 𝐾
𝑆
(𝑐
𝛼

𝑗
, 𝑐
𝛼

𝑓
)𝑁
𝛼

𝑗

+
2

3
(𝑁
𝛼𝑇

𝑓

𝜕

𝜕𝑐
𝛼

𝑓

𝐾
𝑆
(𝑐
𝛼

𝑗
, 𝑐
𝛼

𝑓
))𝑁
𝛼

𝑗

−

𝑀


∑

𝑗=1

𝑒
𝛼

𝑓,𝑖
× 𝐾
𝑆
(𝑐


𝑗
, 𝑐
𝛼

𝑓
)𝑁


𝑗

−
2

3
(𝑁
𝛼𝑇

𝑓

𝜕

𝜕𝑐
𝛼

𝑓

𝐾
𝑆
(𝑐


𝑗
, 𝑐
𝛼

𝑓
))𝑁


𝑗
]

]

,

(14)

where the first sum is over faces 𝑓 for which 𝑥
𝛼

𝑘
is a vertex,

and the symbol 𝑖 is reserved for the index of that vertex on
each such face (𝑖 ∈ {1, 2, 3}).

3.3. Robust Landmark Matching. A further application of
our framework involves ROI analysis methods based on
diffeomorphic landmark matching. Given a template surface
containing 𝐾 landmarks located on vertices, a trained tech-
nician places corresponding landmarks in T1 MR images.
Diffeomorphic landmark matching provides a segmentation
of the structure of interest in each T1 image by applying
the landmark-based transformation to the entire template
surface. This procedure is advantageous, because it provides
a compromise between the speed of automatic segmentation
and the accuracy of hand segmentation.

However, variability in landmark placement and sparsity
of landmarks can occasionally lead to unsatisfactory segmen-
tation results and to a time-consuming quality control stage
where such segmentations are fixed manually. We propose
to regularize the problem, taking into account landmark
placement variability based on voxel size, as well as shape
variability learned from PCA.
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3.3.1. Notation. For simplicity, we assume that landmarks on
the template are chosen among the vertices of its represen-
tation as a triangulated surface. We denote by 𝑋

𝑖
(𝑡) = 𝑥

𝑙(𝑖)
(𝑡)

the 𝑖th landmark, which is placed on a template vertex 𝑙(𝑖) and
flowed according to (2) up to time 𝑡. Therefore, 𝑋

𝑖
(1) = 𝑥

𝛼

𝑙(𝑖)
.

We define the corresponding landmark placed on the target
image as 𝑌

𝑖
.

3.3.2. Energy. We assume that the only available information
on the targets is landmarks at positions homologous to those
on the template. The accuracy of segmentation is then based
on the squared distance between deformed template and
target landmarks, leading to the term

𝐸
2
=

𝐾

∑

𝑖=1

𝑋𝑖 (1) − 𝑌
𝑖



2
. (15)

The weighting parameter is chosen on the order of voxel
size 𝜎2 = ((Δ𝑥/2)

2
+(Δ𝑦/2)

2
+(Δ𝑧/2)

2
)/3 (equal to 0.4475 for

our application) where Δ𝑥, Δ𝑦, and Δ𝑧 are the target image’s
voxel dimension.

3.3.3. Energy Gradient. The variation of 𝐸
2
with respect to

the 𝑘th deformed template vertex is 0 if this vertex does not
correspond to a landmark, and 2(𝑋

𝑘
−𝑌
𝑘
) = 2(𝑥

𝛼

𝑙(𝑘)
−𝑌
𝑘
) if it

does. That is,

𝜕𝐸
2

𝜕𝑥
𝛼

𝑘

= {
0 𝑘 is not a landmark,
2 (𝑥
𝛼

𝑘
− 𝑌
𝑗
) 𝑘 is the 𝑗th landmark.

(16)

3.4. Robust Image Segmentation. We seek to automatically
segment subcortical structures from MR images. For sim-
plicity, we assume that such structures are relatively homoge-
nous throughout and therefore chose an appearance model
for voxel intensities that depend on location only through
whether they are inside the structure or not. To perform
image segmentation, we seek to partition the space into high
integrated voxel-likelihood under such an inside-outside
model. The approach can be generalized to more complex
appearance models (involving higher order image features,
e.g.) in a straightforward way.

3.4.1. Appearance Model. Gaussian mixtures are widely
employed to model voxel intensity of medical imaging. That
is, a p.d.f of intensity 𝐼 at a certain location in the tissue is in
the form of

𝑝 (𝐼; 𝑥) =

𝑄

∑

𝑞=1

𝜋
𝑞
(𝑥)

1

√2𝜋𝜎2
𝑞
(𝑥)

exp(−

(𝐼 − 𝜇
𝑞
(𝑥))
2

2𝜎2
𝑞
(𝑥)

) ,

(17)

where 𝜋
𝑞
, 𝜇
𝑞
, and 𝜎

2

𝑞
denote the weight, mean and variance

of 𝑞th (out of 𝑄) Gaussian component, respectively.
In our work, we assume that the intensities at all points

of the interior region (resp., exterior region) of the surfaces
share the same mixed Gaussian distribution and the p.d.f ’s
are denoted as 𝑝int and 𝑝ext, respectively.

Given the number ofmixture components, themaximum
likelihood estimator for the parameters can be computed
using the EM algorithm [39]. Our estimation of 𝑝int and
𝑝ext (using mixtures of Gaussians) is performed on the
basis of training images with manual segmentation, in which
the collection of all intensity values of voxels inside (resp.,
outside) the ROI are used for 𝑝int (resp., 𝑝ext).

3.4.2. Energy. We define the accuracy of segmentation using
integrals of likelihood of being misclassified, and we define
the mismatch:

𝐸
2
= ∫
𝑥∈int(𝑆)

log (𝑝ext (𝐼 (𝑥))) 𝑑𝑥

+ ∫
𝑥∈ext(𝑆)

log (𝑝int (𝐼 (𝑥))) 𝑑𝑥,

(18)

where we denote the interior and exterior of a closed surface
𝑆 by int(𝑆) and ext(𝑆), respectively.

The constant 𝜎2 in (6) is determined heuristically.

3.4.3. Energy Gradient. The energy gradient is derived in
Theorem A.1 in Appendix A. With 𝑔(𝑦) = log [𝑝ext(𝑦)/
𝑝int(𝐼(𝑦))] and 𝑚

𝛼

𝑓,𝑖
the midpoint of the 𝑖th edge of face 𝑓,

we have

𝜕𝐸
2

𝜕𝑥𝛼

𝑘

= ∑

𝑓:𝑥
𝛼

𝑘
=𝑥
𝛼

𝑓,𝑖

1

2

𝑁
𝑓



∫
𝑓

𝑔 (𝑦) (𝑚
𝛼

𝑓,𝑖
− 𝑦) × 𝑒

𝛼

𝑓,𝑖
𝑑𝜎
𝑓
. (19)

3.5. Numerical Implementation. We use gradient descent to
optimize the PCA coefficients and iteratively update 𝑘

𝑛
with

𝑘
𝑛
− 𝜖(𝜕𝐸/𝜕𝑘

𝑛
) until convergence. The discretization of the

surface integrals in (19) is simply performed by replacing
𝑔(𝑦)(𝑚

𝛼

𝑓,𝑖
− 𝑦) × 𝑒

𝛼

𝑓,𝑖
by its value at 𝑦 = 𝑐

𝛼

𝑓
, the center of face

𝑓, with

1

2
(𝑚
𝛼

𝑘,𝑓
− 𝑐
𝛼

𝑓
) × 𝑒
𝛼

𝑘,𝑓
=
1

3
𝑁
𝛼

𝑓
. (20)

This yields the approximation

𝜕𝐸
2

𝜕𝑥𝛼

𝑘

=
1

3
∑

𝑓:𝑥
𝑘
∈𝑓

𝑔 (𝑐
𝛼

𝑓
)𝑁
𝛼

𝑓
, (21)

that has been used in our implementation.
We summarize these steps in Algorithm 1. The complete

procedure, including training, is summarized inAlgorithm 2.

4. Experimental Methods

To demonstrate the proposed algorithm, for each of the
three data attachment terms, we use data being processed
as part of many of our region-of-interest (ROI) biological
studies in schizophrenia, depression, Alzheimer’s disease,
ADHD, and autism [40–45] (for landmark matching and
image segmentation) and Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study (for surface matching and PCA
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(a) (b) (c)

Figure 1: (a) Template hippocampus for ADNI dataset. (b) Hippocampus isosurface from example volumetric parcellation. (c) Isosurface of
example hippocampus manual segmentation for our landmark datasets.

In order to find an initial momentum 𝛼minimizing (6)
(1) Initialize with 𝑥(0) being vertices of template 𝑇 and 𝛼 = 𝛼.
(2) For the current system, update matrices 𝐽(𝑡) and 𝐽(𝑡)

∗ according to (B.1) and (19).
(3) Compute the gradient 𝜕𝐸

2
/𝜕𝑥
𝛼, for example using (14), (16), or (21).

(4) Solve system (B.3) backward in time with initial condition 𝜂
𝑥
(1) = 𝜕𝐸

2
/𝜕𝑥
𝛼 and 𝜂

𝛼
(1) = 0.

(5) Replace 𝑘
𝑛
by 𝑘
𝑛
− 𝜖((2𝑘

𝑛
/𝜆
𝑛
) + (1/𝜎

2
) 𝑢
𝑛
⋅ 𝜂
𝛼
(0)), 𝜖 being optimized with a line search.

(6) Update the initial momentum 𝛼 = 𝛼 + ∑
𝐷

𝑛=1
𝑘
𝑛
𝑢
𝑛
, and solve (2) initialized at

𝛼, to obtain the updated surface 𝑆𝛼.
Iterate steps 2 to 6 until numerical convergence or reaching the maximum iteration limit.

Algorithm 1: Geodesically controlled diffeomorphic segmentation algorithm.

training). Shown in the accompanying figures are 5 examples
demonstrating the robustness constraints imposed by per-
forming large deformation mapping in the span of the first
few PCA dimensions learned from our empirical mappings.
For the case of landmark matching, we have integrated it
into the workflow of several large neuroanatomical studies
(e.g., [46]). We therefore include this application as a case
study, quantifying performance in detail and demonstrating
improvement we expect to gain. Our hypothesis when begin-
ning this work was that the GDAS algorithm would exhibit
increased robustness compared to more standard methods,
without significantly sacrificing accuracy.

Data used in the preparation of this paper were obtained
from the ADNI database (http://adni.loni.ucla.edu/). The
ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging
andBioengineering (NIBIB), the Food andDrugAdministra-
tion (FDA), private pharmaceutical companies, andnonprofit
organizations, as a $60-million, 5-year public-private part-
nership. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biologicalmarkers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). Determination of sensitive
and specificmarkers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time and
cost of clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, MD, VAMedical Center and University of California
San Francisco, CA, USA. ADNI is the result of efforts ofmany
coinvestigators from a broad range of academic institutions
and private corporations, and subjects have been recruited
from over 50 sites across the US and Canada. The initial goal
of ADNIwas to recruit 800 adults, ages 55 to 90, to participate
in the research, approximately 200 cognitively normal older
individuals to be followed for 3 years, 400 people with MCI
to be followed for 3 years, and 200 people with early AD
to be followed for 2 years. For up-to-date information, see
http://www.adni-info.org/.

4.1. Principal Component Analysis. Given a template and a
set of target surfaces (650 for the ADNI study), we perform
principal component analysis on initial momentum data as
described in Section 2.2. The same ADNI template and PCA
model will be used in each of our applications, even for
data taken from other datasets. We plot the variance as a
function of number of dimensions and identify the number
of dimensions required to account for 95% of the variance.

4.2. SurfaceMatching Study. As part of theADNI study, volu-
metric parcellations (performed using Freesurfer, described,
e.g., in [47]) of whole brains are available at a series of
time points. The 𝑡 = 0 data has been studied and a
template (see Figure 1(a)) as well as a population of initial
momenta data has been calculated [48]. To study their
changing shapes over time, we wish to convert such binary

http://adni.loni.ucla.edu/
http://www.adni-info.org/
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(A) Training.
(1) Generate a template surface 𝑇 from𝑁 surfaces 𝑆

1
, . . . , 𝑆

𝑁
using the method in [35].

(2)Map 𝑇 to the𝑁 surfaces and obtain the initial momenta 𝛼
𝑛
, 𝑛 = 1, . . . , 𝑁. Compute the.

mean momentum 𝛼 and perform PCA in the tangent space as described in Section 2.2.
(3) Estimate the constant 𝜎2, and other terms required for 𝐸

2
(e.g., estimate the density

function 𝑝int and 𝑝ext for interior and exterior of ROI from training images as described in Section 3.4.1).
(B) Segmentation.

(1) Initialize the template surface 𝑇, and register the target data to it (e.g., through a
similitude matching, rigid motion × scale).

(2) Run Algorithm 1 to optimize the initial momentum 𝛼.
(3)The result of segmentation is the deformed surface 𝑆𝛼. Apply the inverse of the

transformation in step 1 if necessary.

Algorithm 2: Geodesically controlled diffeomorphic active shapes.
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Figure 2: (a) The variance of each PCA coefficient in the left hippocampus ADNI population. (b) The normalized cumulative variance
indicating the number of dimensions accounting for 95% of the variability. Note the semilog scale in (a) and (b). (c) A scatter plot of the first
two PCA coefficients for this population.

segmentations to surfaces. However, the voxelized nature of
the segmentations makes simple isosurfaces unacceptable (as
shown in Figure 1(b)).

We therefore employ the technique of matching our
template to such an isosurface, using the constraints of
a smooth deformation regularized by PCA to avoid the
unnatural appearance of the isosurface. We show example
results from our GDAS surface matching algorithm, and
compare them to typical results from the traditional surface
matching LDDMM algorithm.

4.3. Landmark Matching Study. Our segmentation pipeline
for our ROI methods is described in [40–44, 46]. The
relevant portion (the landmark matching phase) for one
such study is summarized here. Thirty-eight landmarks are
placed along the left and right hippocampi in 441 0.93 ×

0.93 × 2.0mm T1 images of the brain. The first was placed
at the tip of the head of the hippocampus (the center of
the most anterior slice containing the hippocampus in a T1
image), and the second was placed at the tip of the tail
of the hippocampus (the center of the most posterior slice
containing the hippocampus). The distance between these
two was then divided into 9 slices from anterior to posterior,

and on each slice 4 landmarks were placed at the superior,
inferior, medial, and lateral margins of the hippocampus.
This manual procedure takes approximately 10 minutes for a
trained technician to complete, as compared to over 2 hours
for a full hand segmentation of images of this size.

In the existing segmentation and analysis pipeline, a
template surface was chosen as the left hippocampus for
a single subject, and a manual segmentation and resulting
isosurface were generated for this case. After a similitude
alignment (including reflecting right hippocampi to match
left) landmark LDDMM[49]was used tomap this template to
each target, defining a segmentation surface and binary image
for each patient.

However, this procedure was found to suffer from lack
of robustness, and roughly 30 out of 441 cases were unac-
ceptable. A laborious phase of quality control was necessary
involving identifying problematic or distorted segmenta-
tions, manually editing their binary images, and regenerating
isosurfaces.

To measure whether our prior model provides enough
robustness to avoid such issues, we chose 5 challenging
cases of left hippocampi (as identified during quality con-
trol inspection), where manual intervention was required
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Figure 3: Examples of hippocampus surfaces resulting from using (left/green) surface LDDMM and (center/blue) GDAS surface matching.
The target isosurface is shown at the right (red).

and 11 typical cases, and we examined the performance
improvement using the proposed algorithm rather than that
outlined above. These cases were manually segmented by a
trained technician to provide a gold standard, and associated
isosurfaces were generated for further evaluation. Further-
more, for 3 cases requiring intervention and 2 typical cases
(those illustrated in Figure 4), a secondmanual segmentation
was obtained to give a sense of interrater variability.

Note that the segmentations that are shown here do not
constitute the final output of the ROI pipeline described
in [40], in which they would be further processed. That

is, the results of standard landmark mapping shown here
are not reflective of the final segmentations. However, we
expect improvement at this stage to contribute to overall
improvement.

The template with its associated landmarks is shown
in Figure 1(a). In Figure 1(c), an example isosurface gen-
erated from a manual segmentation is shown together
with its associated landmarks. Note that landmarks were
placed on template surface vertices, but the target landmarks
were placed independently (by a different technician) from
the gold standard manual segmentation. Figure 1 shows
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Figure 4: Segmentation results for standard landmark matching (left/green/solid) and GDAS landmark matching (center/blue/broken) for
5 examples (first 3 were identified for quality control; final 2 were not). Segmentations overlaid with corresponding T1 image and “ground
truth” (red highlight) are shown in the right column.

the uncertainty of landmark placement, particularly in the
region of the hippocampus’ head and demonstrates the need
to include landmark placement variability in the segmenta-
tion algorithm. In these figures and throughout this paper,
the color cyan will be used for the template, red for the target,
blue for our new results, and green for results using existing
algorithms.

4.4. Image Segmentation Study. To demonstrate the capabili-
ties of the GDAS image segmentation algorithm, 5 examples
for the same dataset as the landmark matching study are

shown. We anticipate that good initial alignment will be
important for high quality segmentations, and so the same
landmark based similitude registration as above will be used
to initialize the target data in this study.

We use 4 outside and 3 inside components for our
Gaussian mixture model.Themixture model is trained based
on gold standard segmentations from the remaining cases in
a “leave-one-out” fashion. A histogram equalization intensity
transformation is applied to each T1 image to match the first
training sample, based on data from a neighborhood (±5 vox-
els) around the landmarks, before estimating mixture model
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coefficients. A similar histogram equalization is applied to
the target image (to match the first training sample) before
beginning the segmentation process.

4.5. Analysis Methods. In analyzing results, we seek to
demonstrate two main ideas. First, the accuracy of GDAS is
comparable to existing methods, and second its robustness is
improved. Accuracy is demonstrated using three techniques.
First, we use visual inspection. Second, 𝜅 scores [50] are used
to compare our results to gold standard segmentations. This
score is defined by

𝜅 =
𝑝agree − 𝑝random

1 − 𝑝random
, (22)

where 𝑝agree is the fraction of voxels in which the given seg-
mentation agrees with themanual segmentation, and 𝑝random
is the fraction you would expect by random chance (based
only on the volumes of foreground and background). We
calculate 𝜅 scores using a Monte-Carlo method, generating
uniformly distributed points and checking if they are inside
one or both segmentations. For applications involving sub-
cortical structures, a value of 𝜅 = 0.8 is generally considered
quite good. Third, surface-to-surface distance cumulative
distribution functions (c.d.f.s) are used to quantify average
proximity of surfaces. At each vertex on each surface, we
calculate the distance to the nearest vertex on the other
surface and analyze the distribution of these distances. We
examine entire c.d.f.s and also examine thresholds: distance
at which 50% of vertices are closer than and distance at which
80% of vertices are closer than.

Robustness is also demonstrated using visual inspection,
with care taken to highlight challenging regions. Surface-
to-surface distance histograms are also restricted to such
regions, highlighting challenging areas rather than averaging
over the entire surface. Additionally, we quantify surface
smoothness by measuring integrated sum of squares of
principal curvatures over the deformed template surface
(this quantity is scale invariant); the assumption being that
smoother surfaces more accurately reflect natural anatomy in
these applications.

Further, to overcome limitations surrounding the accu-
racy of manual segmentation and to emphasize the robust-
ness of our algorithm, we evaluate its performance on simu-
lated data. Five hippocampal shapes are generated according
to the PCAmodel in Section 4.1, and landmarks are placed on
the vertices shown in Figure 1(a) with additiveGaussian noise
of variance 0.01, 0.1, 1, 10, and 100 times that of the weighting
parameter discussed in Section 3.3.2. Traditional LDDMM
landmark matching as well as GDAS is run on this dataset
using the same parameters as for our real data, emulating a
scenario where errors in landmark placement are unknown
beforehand.Wedemonstrate robustness by reporting 𝜅 scores
as a function of landmark noise for both algorithms. Lastly,
we show the accuracy at which PCA coefficients are recovered
using Mahalanobis distance, and 𝑃 values corresponding to
such distances are shown for real and simulated data.

(a) (b)

Figure 5: Segmentation results for standard landmark matching
(left/green) and GDAS landmark matching (right/blue), for an
additional 8 examples demonstrating GDAS overcoming common
pitfalls.

5. Results

5.1. Principal Component Analysis. After performing tangent
space PCA with the left hippocampus for the ADNI dataset,
we found 31 dimensions characterized 95% of the variability
for this population (to be contrasted with 1184 × 3 dimen-
sions associated with a momentum vector at each vertex of
the discretized surface). This is illustrated in Figure 2.

5.2. Examples: Surface Matching. For 5 examples, the out-
comes of traditional LDDMM surface matching [17] and
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Figure 6: Example segmentations of T1 images using GDAS image segmentation based on inside-outside modelling. The resulting surfaces
are shown on the left-hand side, and T1 images with gold standard (red highlight) and segmentation (blue curve) are shown in coronal (center)
and sagittal (right) views.

GDAS surface matching are shown in Figure 3, with tar-
get isosurfaces shown on the right-hand side. Qualitatively
speaking, the traditional LDDMM result tends to produce
squared off hippocampal heads (left side in figure) due to
outlier voxels, as well as an overestimation of the medial
margin (bottom of figure) due to overfitting an outlier
“ribbon” of voxels.

The constraints imposed in GDAS surface matching
result in a useful and accurate segmentation reflective of the
population being analyzed. The “fingerlike” and “ribbonlike”

projections reflecting the voxelized structure of the target iso-
surface, as well as the set of constraints used in Freesurfer that
are designed for an unrelated application, do not significantly
influence the resulting surface.

5.3. Examples: Robust Landmark Matching. For 3 cases
requiring quality control and 2 typical cases, the outcome
of landmark matching is shown in Figure 4. Traditional
landmark matching is shown on the left side (green), while
GDAS landmark matching is shown in the center column
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Figure 8: Kappa scores are shown for each of the 16 patients
examined, with mean and standard deviation shown on the right.
Green/left of pair: typical landmark matching; blue/right of pair:
GDAS landmark matching.

(blue). In the right-hand column, the surfaces are shown
overlaid on a T1 image, with the gold standard segmentation
shown in red.

Qualitatively, the improvement of the GDAS algorithm
over traditional landmark matching is evident. Large distor-
tions at the head of the hippocampus are common where
landmark placement can be quite variable. Along the length
of the hippocampus, deformations with scale characteristic
of the distance between landmarking planes are easily seen.
These issues are still common in those surfaces not requiring
quality control. The GDAS algorithm avoids each of these
pitfalls, avoiding overfitting landmarks while maintaining
shape variability characteristic of the population.

Because poor performance of traditional landmark
LDDMM motivated this analysis, we also display (in less
detail) results for an additional 8 patients selected randomly

from among those identified as performing poorly. These are
shown in Figure 5 with traditional LDDMM results shown in
the left column and GDAS results shown in the right column.
It is evident that the distortions seen in the top three rows of
Figure 4 are typical for this dataset, and that the GDAS results
avoid these distortions in a similar manner.

5.4. Examples: Image Segmentation. Anexample of the results
of Gaussianmixturemodeling is shown as probability density
functions in Figure 7. Measured data (after histogram equal-
ization) is shown as a solid curve, and the results of mixture
modeling as dashed curve.The Gaussian mixture parameters
are quite similar in all cases examined. The “inside” region
(narrow curve, blue and red) is a unimodal distribution
describing subcortical gray matter. The challenge of this
application can be seen from the “outside” region (broad
curve, green and magenta), which is a more heterogenous
mixture. It describes cerebrospinal fluid and white matter, as
well as cortical gray matter and partial-volume voxels whose
intensities are quite similar to the “inside”.

Five example segmentation results are shown in Figure 6.
The performance appears satisfactory, an achievement con-
sidering the large overlap between inside and outside his-
tograms seen in Figure 7. The PCA prior can prevent the
template surface from deforming to erroneously include
cortical gray matter in many cases, even though it is similar
or identical in intensity to subcortical graymatter.This simple
inside/outside model could likely be improved, for example,
by including a heterogenous appearancemodel, or combining
landmarks and intensity information in cost functions. How-
ever, this will be the subject of future research.The purpose of
this section was to demonstrate the extensibility of the GDAS
framework to a varied range of applications.

5.5. Evaluation: ROI Method Case Study. For the landmark
matching application, we describe in detail the performance
of the GDAS algorithm as compared to our existing method.

The overlap on a large scale is quantified by 𝜅 scores, as
shown in Figure 8 for each of the 16 test cases. The GDAS
results tend to be similar, but better on average than those
for landmark LDDMM. For typical landmark matching, the
mean and standard deviation of 𝜅 is 0.7131 ± 0.0457, and
for GDAS landmark matching, it is 0.7268 ± 0.0531. The
difference is statistically significant (𝑃 < 0.05 in Student’s
paired 𝑡-test).

For those cases with two raters, we examine the second
𝜅 score, which differed from the first by 2.66% on average,
to understand interrater variability. We present 𝜅 scores,
averaged over the two raters in Table 1. In each case, the
GDAS method performs superiorly for both raters, and this
is reflected in the increased average 𝜅 scores from 0.732 to
0.751. Despite this improvement, it is interesting to note that
the 𝜅 overlap between the two manual segmentations is com-
parable to that between the results of the two segmentation
methods.

Examining overlap voxel by voxel, as in Figure 8, shows
our algorithm making a small improvement in accuracy.
However, the relatively larger improvement in robustness
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Figure 9: Surface-to-surface distance c.d.f.s including (a) all vertices and (b) only vertices within 10mm of head landmark. Inset shows same
data zoomed to ≥80%. Plot (c) shows the 50% (left pair in a set of four) and 80% (right pair in a set) crossing for the vertices shown in (a)
(“All”) and (b) (“Head”), as well as within 2.5mm of any landmark (“Close”) or not (“Far”). Green/solid/left of pair: traditional LDDMM;
blue/broken/right of pair: GDAS.

Table 1: Interrater variability is examined by presenting 𝜅 overlap between various pairs of data (indicated in the left column).

Case 1 2 3 4 5 Average
LDDMM versus Manual Segs. 0.780 0.743 0.718 0.719 0.702 0.732

GDAS versus Manual Segs. 0.784 0.768 0.752 0.721 0.731 0.751

Manual Segs. 0.866 0.853 0.813 0.800 0.784 0.823

LDDMM versus GDAS 0.832 0.820 0.830 0.827 0.829 0.828

can be seen when examining surface shapes globally such as
in Figures 4 and 5 and contrasting with expectations from
knowledge of neuroanatomy. The region around the head
was seen to be particularly challenging to segment in the
traditional landmark case, and distortions occurring at the
scale of landmark spacing give the impression that certain
regions are “left behind.” To quantify accuracy globally, while
acknowledging these specifically challenging areas, we use
surface-to-surface-distance histograms and associated c.d.f.s.

These c.d.f.s are shown for all 16 patients (unsaturated
colors, green: standard landmark matching, blue: GDAS)
in Figure 9(a). Combining all vertices gives a single c.d.f
indicative of the whole population (saturated colors). A
CDF closer to the top left reflects a better segmentation.
In Figure 9(b), we show the same analysis, but restricted to
verticeswithin 10mmof the head landmark.This analysis was
repeated (not shown) with vertices restricted to those within
2.5mm of any landmark, and those not within 2.5mm of any
landmark.

For each patient, the 50% and 80% crossings were mea-
sured and are plotted in Figure 9(c). In each set of four bars,
the left two show 50% crossings, and the right two show 80%
crossings. A smaller value indicates a better segmentation,
but the 50% crossing indicates a “typical” region, while the
80% crossing indicates an “outlier” region. Our hypothesis
was that the GDAS algorithm would show improvement in
outlier regions, at the cost of poorer performance in typical
regions. However, the data shows better performance from
GDAS in all regions examined.This is likely due to traditional
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Figure 10: Integrated sum of squares of principal curvatures is
shown for the 16 patients examined, as well as means and standard
deviations. Green/left of pair: typical landmarkmatching; blue/right
of pair: GDAS landmark matching.

LDDMMoverfitting landmark placement inaccuracies, while
GDAS finds an appropriate balance between landmark
matching accuracy and shape variability. Differences show
statistical significance (𝑃 < 0.05 in a Student’s paired 𝑡-
test) with the exception of vertices close to the head (50%:
𝑃 = 0.4073, 80%: 𝑃 = 0.0895).

To further quantify the more natural shapes produced by
GDAS, we examine the curvature of the resulting segmen-
tations. For each patient examined, the integrated sum of
squares of principal curvatures is shown in Figure 10. In all
but one case, the GDAS algorithm results in surfaces with
less curvature.The differences are statistically significant (𝑃 <

0.0001 in a Student’s paired 𝑡-test).
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(a) (b)

Figure 11: Example result from simulated data. (a) Standard land-
mark matching, (b) GDAS landmark matching. Landmark variance
from top to bottom: 0.004475, 0.04475, 0.4475, 4.475, and 44.75.

5.6. Evaluation: Simulated Data. To further quantify the
performance and robustness of our landmark matching
algorithm, we evaluate it using simulated data such that the
gold standard segmentation can be precisely known. Figure 11
shows example results of our landmark matching algorithms
as described in Section 4.5, with traditional landmarkmatch-
ing shown on the left side (green) and GDAS landmark
matching shown on the right side (blue). From top to bottom,
the additive noise in landmark placement increases from 1/10
to 10 times that expected from voxel size in our case study
(variance 0.004475, 0.04475, 0.4475, 4.475, and 44.75). At low
levels of landmark uncertainty, the two algorithms give very
similar results. However, as landmark uncertainty increases,
the performance of GDAS exhibits a graceful decline, while
that of traditional LDDMMdemonstrates a precipitous drop.
Note that third row gives a level of landmark uncertainty
comparable to that in our case study.

Figure 12 shows 𝜅 scores as a function of landmark noise
for each of the five simulated cases (desaturated colors), as
well as for the average performance (saturated colors). Con-
sistent with our expectations of improved robustness, we see
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Figure 12: Kappa scores are shown for the 5 simulated cases
(desaturated) and mean and standard deviation (saturated), as a
function of landmark noise. Green/bottom: standard landmark
matching; blue/top: GDAS landmark matching.

a much smaller variability in 𝜅 scores for GDAS. Further-
more, consistent with our earlier discussion of accuracy,
we see poor performance of traditional LDDMM due to
overfitting untrustworthy data. Note that the third data point
(close to the left-hand side of the figure) corresponds to a level
of landmark uncertainty comparable to that in our case study.

For the GDAS results, we can also express accuracy
by measuring the error in PCA coefficients recovered by
the algorithm. A natural way to do this is through the
Mahalanobis distance (treating the inverse of the covariance
matrix as a bilinear symmetric operator defining an inner
product). Loosely, this distance is the square root of the
sum of squares of differences in PCA coefficients; each being
first divided by its respective standard deviation. At the five
levels of landmark noise examined, the distance between the
true coefficients and those recovered by GDAS (summed
over the 31 coefficients) is given by 0.8100, 2.0484, 4.0477,
5.5894, and 5.7708 standard deviations. However, the lower
order coefficients, which contribute more to overal shape,
are recovered with more accuracy than the higher ones. The
first coefficient is recovered with an error of 0.0154, 0.0259,
0.1422, 0.4338, and 0.6215 standard deviations, and the first 5
with an error of 0.0813, 0.2791, 0.5213, 1.6052, 2.0663 standard
deviations.

This highlights a potential future direction for the GDAS
framework. We calculate the Mahalanobis distance from the
origin for each of the 650 patients in our ADNI training set
and use the empirical distribution to calculate 𝑃 values. A
sample of these patients is shown in Figure 13(a). Surfaces are
colored by their 𝑃 value and binned for 𝑃 between the values
{0, 0.01, 0.05, 0.1, 0.5, 1}. Each column represents one bin, and
five-example cases per bin are shown. It is evident that such
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Figure 13: Population of left hippocampus surfaces binned by 𝑃

value from ADNI dataset. (a) Real patient data. (b) Simulated data.

a distance is descriptive of the naturalness of anatomical
shapes, with low 𝑃 values corresponding to unnatural shapes.
Using such a tool to identify outliers for targeted quality
control is the subject of future research.

An extension of this idea is the ability to generate random
anatomical shapes and quantify their typicality with𝑃 values.
Some examples are shown in Figure 13(b), with format
paralleling what was discussed above.This tool demonstrates
the generative nature of the GDAS framework andmay prove
to be useful for didactic or other purposes.

6. Conclusion

Volumetric segmentation has played an essential role in
computer-based interpretation ofmedical images.There have
been many approaches published to address this challenge
[1, 51–58]. Most segmentation methods use a combination of
shape constraint and data attachment to achieve their goals.
Data attachment can be based on geometric data, gray levels,
edge detection [59], or unstructured segmentation like K-
Means [60] or Gaussian Mixtures [61].

In this paper, we have demonstrated applications of the
GDAS framework with data attachment based on landmarks,
surfaces, and likelihood ratios from grayscale values. For the
case of landmark matching, we demonstrated how it could
be used to remove or hasten a laborious quality control
phase of large-scale neuroanatomical studies. We quantified
its improvement over an existing method based on accuracy,
as well as robustness. As is typical of Bayesian analysis, we
originally expected to see a tradeoff between accuracy and
robustness. However, our results showed improvements in
both, likely due to overfitting to noisy data in the standard
method, reducing accuracy.

The GDAS algorithm shows improvement over tradi-
tional landmark matching in 𝜅 scores and surface-to-surface
distances, as compared to the gold standard segmentation.
Qualitatively, improvements are particularly noticeable in
the region around the hippocampus’ head (where landmark
placement is uncertain). The segmentations resulting from
GDAS appear natural, reflecting the typicality and variability
of the population fromwhich the PCA basis was determined.
This naturalness was quantified in terms of reduced curvature
as compared to the traditionalmethod and can be understood
in terms of Mahalanobis distance 𝑃 values.

We have found in large sample studies that robustness is
accommodated by ourGDASmethods controlled by the PCA
dimensions empirically trained from samples of subcortical
anatomy. In a study with over 400 hand placements of
landmarks in hippocampus and amygdala, we have found
that robust GDAS detects our failed landmark based map-
pings using 𝑃-values, supporting the notion that it provides
direct method for quality control of large deformation map-
pings. Exploring this possibility will be the subject of future
research.

Our method is based on the geodesically controlled
diffeomorphism constraints associated with the momentum
conservation law. Encoding structure via prior distributions
which are empirically trained has a longstanding tradition
in active shape and appearance modeling [4, 62], defined
on landmark structures as well as on higher dimensional
structures as proposed in [3, 63, 64]. Our principal contribu-
tion here has been to encode the diffeomorphism constraint
into the standard active shape models. By incorporating the
conservation law controls, we not only inherit the power
of diffeomorphic transfer of the submanifold surface in the
background 3D space, as has been described in [7, 8], but also
obtain themetric structure property. Along the geodesic path
connecting templates and targets; the metric structure of the
large space is maintained.
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These properties have been explicitly modelled in our
own methods previously using deformable templates acted
uponbydiffeomorphisms and embedding them into the asso-
ciated metric space structures [12, 65]. These formulations
have tended to explicitly model the transformations on the
entire dense background spaceΩ, working tominimize a cost
function accumulated over the entire space. In the setting
where the template consists of a collection of homogeneous
substructures, we would expect to obtain similar formula-
tions as described herein. In fact, Qiu and Miller [48] have
used dense deformations for statistical modeling in such
settings via their support on the boundaries of the cortical
substructures.

Appendices

A. Image Segmentation Energy Gradient

Theorem A.1. The gradient of (18) with respect to the 𝑘th
deformed template vertex is given by (19).

In the proof of the theorem, we will use the following
lemma (see [34] for a proof).

Lemma A.2. Let 𝑆 be a surface and V a smooth function on 𝑆

with values in R3. For small 𝜖 > 0, let 𝑆
𝜖
denote the surface

𝑆 + 𝜖V
|
𝑆

. Let ℎ be a smooth vector field on R3. One has

𝜕
𝜖
(∫
𝑆
𝜖

ℎ
𝑇
𝑛
𝜖
𝑑𝜎
𝜖
)

𝜖=0

= ∫
𝜕
𝑆

det (𝜏, ℎ, V) 𝑑ℓ + ∫
𝑆

(∇ ⋅ ℎ) V
𝑇
𝑛 𝑑𝜎,

(A.1)

where 𝜏 is the positively oriented tangent to the boundary of
𝑆, 𝑛
𝜖
and 𝜎

𝜖
, respectively, denote the unit normal and the area

form on 𝑆
𝜖
, and ∇ ⋅ ℎ is the divergence of ℎ.

Proof of Theorem 1. First notice that by adding and subtract-
ing ∫
𝑥∈int(𝑆) log [𝑝int(𝐼(𝑥))]𝑑𝑥, we can rewrite the energy as

𝐸
2
= ∫
𝑥∈int(𝑆)

𝑔 (𝑥) 𝑑𝑥 + cst, (A.2)

where the constant, cst, has gradient zero.
Define surface faces and normals as in Section 3.2.1. Note

that the unit normal on a face is 𝑛𝛼
𝑓
= 𝑁
𝛼

𝑓
/|𝑁
𝛼

𝑓
|, the area of

face 𝑓 being |𝑁𝛼
𝑓
|. A generic point in face 𝑓 takes the form

𝑦 = 𝜆
1
𝑥
𝛼

𝑓,1
+ 𝜆
2
𝑥
𝛼

𝑓,2
+ 𝜆
3
𝑥
𝛼

𝑓,3
, (A.3)

with 𝜆
1
, 𝜆
2
, 𝜆
3
≥ 0 and 𝜆

1
+ 𝜆
2
+ 𝜆
3
= 1. These coefficients

are explicitly given by

𝜆
𝑗
𝑁
𝑓
=
1

2
(𝑚
𝛼

𝑓,𝑗
− 𝑦) × 𝑒

𝛼

𝑓,𝑗
. (A.4)

A variation 𝑥
𝛼

𝑘
→ 𝑥
𝛼

𝑘
+ 𝜖𝜂
𝑘
for 𝑘 = 1, . . . , 𝐿 implies for such a

𝑦 the transformation 𝑦 + 𝜖V(𝑦) with

V (𝑦) = 𝜆
1
𝜂
𝑓,1

+ 𝜆
2
𝜂
𝑓,2

+ 𝜆
3
𝜂
𝑓,3
. (A.5)

The mapping V which is defined this way is a continuous
vector field on 𝑆 and smooth (linear) over each face. Introduce
a function ℎ such that ∇ ⋅ ℎ = 𝑔 (such an ℎ always exists). By
Stokes theorem, we have

𝐸
2
= ∫
𝑆

(ℎ
𝑇
𝑛) 𝑑𝜎 + cst. (A.6)

We can decompose this integral over all faces and apply (A.1)
in Lemma A.2 to each face. Summing the result over the
faces and noting that the boundary terms cancel (because the
tangents of two neighbor faces are in opposite directions), we
find

(
𝑑𝐸
2

𝑑𝑥𝛼
)

𝑇

𝜂 = ∑

𝑓∈𝐹

∫
𝑓

𝑔 (V ⋅ 𝑛
𝑓
) 𝑑𝜎
𝑓
. (A.7)

Replacing V by its expression and reordering the sum over the
vertices yield

(
𝑑𝐸
2

𝑑𝑥𝛼
)

𝑇

𝜂

=

𝐿

∑

𝑘=1

𝜂
𝑇

𝑘
( ∑

𝑓:𝑥
𝛼

𝑘
=𝑥
𝛼

𝑓,𝑖

1

2

𝑁
𝑓



∫
𝑓

𝑔 (𝑦) (𝑚
𝛼

𝑓,𝑖
− 𝑦) × 𝑒

𝛼

𝑓,𝑖
𝑑𝜎
𝑓
) .

(A.8)

Equation (19) follows, completing the proof.

B. Adjoint Method

We need the following definitions, associated to the variation
of (2) and its transpose. Applying an infinitesimal variation
𝛼 → 𝛼 + 𝛿𝛼 in the initial condition induces infinitesimal
variations 𝑎 + 𝛿𝑎 and 𝑥 + 𝛿𝑥, and the pair (𝛿𝑥, 𝛿𝑎) obeys
the following differential system, that can be obtained from
a formal variation of (2):

d𝛿𝑥
𝑘
(𝑡)

d𝑡
=

𝐿

∑

𝑙=1

𝛾
𝑘𝑙
𝛿𝑎
𝑙
+ 2𝛾


𝑘𝑙
𝑎
𝑙
(𝑥
𝑘
− 𝑥
𝑙
) ⋅ (𝛿𝑥

𝑘
− 𝛿𝑥
𝑙
) ,

d𝛿𝑎
𝑘
(𝑡)

d𝑡
=

𝐿

∑

𝑙=1

− 2𝛾


𝑘𝑙
(𝑎
𝑙
⋅ 𝛿𝑎
𝑘
+ 𝛿𝑎
𝑙
⋅ 𝑎
𝑘
) (𝑥
𝑘
− 𝑥
𝑙
)

− 2

𝐿

∑

𝑙=1

𝛾


𝑘𝑙
(𝑎
𝑙
⋅ 𝑎
𝑘
) (𝛿𝑥
𝑘
− 𝛿𝑥
𝑙
)

− 4

𝐿

∑

𝑙=1

𝛾


𝑘𝑙
(𝑎
𝑙
⋅ 𝑎
𝑘
) (𝑥
𝑘
− 𝑥
𝑙
)

× ((𝑥
𝑘
− 𝑥
𝑙
) ⋅ (𝛿𝑥

𝑘
− 𝛿𝑥
𝑙
)) ,

(B.1)

with 𝛾


𝑘𝑙
= 𝛾

(‖𝑥
𝑘
− 𝑥
𝑙
‖
2
) (recall that 𝛾

𝑘𝑙
, 𝛾


𝑘𝑙
are short for

𝛾(‖𝑥
𝑘
− 𝑥
𝑙
‖
2
) and 𝛾


(‖𝑥
𝑘
− 𝑥
𝑙
‖
2
)).

This linear system can be rewritten in matrix form:

d
d𝑡

(
𝛿𝑥

𝛿𝛼
) = 𝐽 (𝑡) (

𝛿𝑥

𝛿𝛼
) . (B.2)
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We let 𝜁(𝑥0, 𝛼, 𝜌) denote the solution at 𝑡 = 1 of (B.1)
initialized at 𝛿𝑥(0) = 0 and 𝛿𝛼(0) = 𝜌, solved along
with (2) initialized with (𝑥

0
, 𝛼). We define the dual variation

𝜁
∗
(𝑥
0
, 𝛼, 𝜉) as follows. First, solve (2) with initial conditions

𝑥(0) = 𝑥
0 and 𝑎(0) = 𝛼. Then, solve

d
d𝑡

(
𝜂
𝑥

𝜂
𝛼

) = −𝐽 (𝑡)
∗
(
𝜂
𝑥

𝜂
𝛼

) , (B.3)

from time 𝑡 = 1 to time 𝑡 = 0 with 𝜂
𝑥
(1) = 𝜉 and 𝜂

𝛼
(1) = 0,

and set

𝜁
∗
(𝑥
0
, 𝛼, 𝜉) = 𝜂

𝛼
(0) . (B.4)

We state without proof the following lemma, which is a
consequence of the theory of linear differential systems (cf.
[34, 35] for a proof).

Lemma A.3. For dynamic system (2), let 𝑑𝑥𝛼/𝑑𝛼 denote the
Jacobian matrix of the nonlinear transformation 𝛼 → 𝑥

𝛼,
represented as a 3𝐿 by 3𝐿 matrix. One has, for a momentum
vector 𝜌,

(
𝑑𝑥
𝛼

𝑑𝛼
)𝜌 = 𝜁 (𝑥

0
, 𝛼, 𝜌) , (B.5)

and, for a vector 𝜉 ∈ R3𝐿,

(
𝑑𝑥
𝛼

𝑑𝛼
)

𝑇

𝜉 = 𝜁
∗
(𝑥
0
, 𝛼, 𝜉) . (B.6)

In our application, setting 𝜉 = 𝜕𝐸
2
/𝜕𝑥
𝛼, we retreive

(
𝜕𝐸
2

𝜕𝛼
) = (

𝜕𝑥
𝛼

𝜕𝛼
)

𝑇

(
𝜕𝐸
2

𝜕𝑥𝛼
)

= 𝜁
∗
(𝑥
0
, 𝛼,

𝜕𝐸
2

𝜕𝑥𝛼
) ,

(B.7)

which is used in calculating the energy gradient.
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[12] M. I. Miller, A. Trouvé, and L. Younes, “On the metrics and
Euler-Lagrange equations of computational anatomy,” Annual
Review of Biomedical Engineering, vol. 4, pp. 375–405, 2002.

[13] V. I. Arnold, “Sur la geomerie differentielle des groupes de lie de
dimension infinie et ses applications a l’hydrodynamique des
uides parfaits,” Annales De L’Institut Fourier, vol. 16, no. 1, pp.
319–361, 1966.

[14] D. D. Holm, J. E. Marsden, and T. S. Ratiu, “The euler-
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